Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Chinese Medical Journal ; (24): 2438-2446, 2021.
Article in English | WPRIM | ID: wpr-921152

ABSTRACT

BACKGROUND@#Since the outbreak of coronavirus disease 2019 (COVID-19), human mobility restriction measures have raised controversies, partly because of the inconsistent findings. An empirical study is promptly needed to reliably assess the causal effects of the mobility restriction. The purpose of this study was to quantify the causal effects of human mobility restriction on the spread of COVID-19.@*METHODS@#Our study applied the difference-in-difference (DID) model to assess the declines of population mobility at the city level, and used the log-log regression model to examine the effects of population mobility declines on the disease spread measured by cumulative or new cases of COVID-19 over time after adjusting for confounders.@*RESULTS@#The DID model showed that a continual expansion of the relative declines over time in 2020. After 4 weeks, population mobility declined by -54.81% (interquartile range, -65.50% to -43.56%). The accrued population mobility declines were associated with the significant reduction of cumulative COVID-19 cases throughout 6 weeks (ie, 1% decline of population mobility was associated with 0.72% [95% CI: 0.50%-0.93%] reduction of cumulative cases for 1 week, 1.42% 2 weeks, 1.69% 3 weeks, 1.72% 4 weeks, 1.64% 5 weeks, and 1.52% 6 weeks). The impact on the weekly new cases seemed greater in the first 4 weeks but faded thereafter. The effects on cumulative cases differed by cities of different population sizes, with greater effects seen in larger cities.@*CONCLUSIONS@#Persistent population mobility restrictions are well deserved. Implementation of mobility restrictions in major cities with large population sizes may be even more important.


Subject(s)
Humans , COVID-19 , China/epidemiology , Cities , SARS-CoV-2
2.
Chinese Medical Journal ; (24): 1993-1998, 2012.
Article in English | WPRIM | ID: wpr-283680

ABSTRACT

<p><b>BACKGROUND</b>Calcium phosphate cement (CPC) is a favorable bone-graft substitute, with excellent biocompatibility and osteoconductivity. However, its reduced osteoinductive ability may limit the utility of CPC. To increase its osteoinductive potential, this study aimed to prepare tissue-engineered CPC and evaluate its use in the repair of bone defects. The fate of transplanted seed cells in vivo was observed at the same time.</p><p><b>METHODS</b>Tissue-engineered CPC was prepared by seeding CPC with encapsulated bone mesenchymal stem cells (BMSCs) expressing recombinant human bone morphogenetic protein-2 (rhBMP-2) and green fluorescent protein (GFP). Tissue-engineered CPC and pure CPC were implanted into rabbit femoral condyle bone defects respectively. Twelve weeks later, radiographs, morphological observations, histomorphometrical evaluations, and in vivo tracing were performed.</p><p><b>RESULTS</b>The radiographs revealed better absorption and faster new bone formation for tissue-engineered CPC than pure CPC. Morphological and histomorphometrical evaluations indicated that tissue-engineered CPC separated into numerous small blocks, with active absorption and reconstruction noted, whereas the residual CPC area was larger in the group treated with pure CPC. In the tissue-engineered CPC group, in vivo tracing revealed numerous cells expressing both GFP and rhBMP-2 that were distributed in the medullar cavity and on the surface of bony trabeculae.</p><p><b>CONCLUSION</b>Tissue-engineered CPC can effectively repair bone defects, with allogenic seeded cells able to grow and differentiate in vivo after transplantation.</p>


Subject(s)
Animals , Rabbits , Bone Cements , Chemistry , Bone Morphogenetic Protein 2 , Calcium Phosphates , Chemistry , Cells, Cultured , Femur , General Surgery , Recombinant Proteins , Tissue Engineering , Methods , Transforming Growth Factor beta
3.
Chinese Journal of Pediatrics ; (12): 209-213, 2011.
Article in Chinese | WPRIM | ID: wpr-286129

ABSTRACT

<p><b>OBJECTIVE</b>To screen differentially expressed brain proteins with proteomic method in cerebral cortex of neonatal rats with congenital hypothyroidism.</p><p><b>METHOD</b>From the 13th day of gestation, pregnant Wistar rats from the experimental group were given intragastrically with 2.5 ml of 1% propylthiouracil daily. Cerebral cortex specimens were collected from the control and hypothyroidism neonatal rats. Two-directional electrophoresis (2-DE) was applied to analyze protein expression diversities between the euthyroid and hypothyroidism neonatal rat cerebral cortex. Protein spots with significantly different expression were screened and identified by mass spectrometry. Radioimmunoassay (RIA) was used to analyze serum FT(3), FT(4) levels of each groups.</p><p><b>RESULT</b>The body weight of hypothyroid neonatal rats were lower than those in the corresponding control group (t = -8.07, P < 0.01). The FT(3) levels of hypothyroid neonatal rats were lower than those in the corresponding control group (t = 5.39, P < 0.01). The FT(4) levels of hypothyroid neonatal rats were lower than those in the corresponding control group (t = 7.62, P < 0.01). Stable 2-DE maps of normal and CH neonatal rat were constantly obtained. The maps were analyzed by software. Seven protein spots with high reproducibility, high resolution and significantly different expression were chosen and identified by mass spectrometry, including collapsing response mediator protein 2, actin related protein 2/3 complex subunit 5, ubiquitin-conjugating enzyme E2-25K, ATP synthase subunit d, Cu-Zn superoxide dismutase, synuclein alpha, and nucleoside diphosphate kinase.</p><p><b>CONCLUSION</b>The value of this research is demonstrated here by the identification of several proteins known to be associated with nerve synapse structures formation, cell survival, metabolism, cell signal transduction, neural differentiation and nerve growth in the central nervous system. Furthermore this study identified several proteins except for collapsing response mediator protein 2 and Cu-Zn superoxide dismutase that have not previously been described in the literature and which may play an important role as either sensitive biomarkers of brain dysfunction caused by congenital hypothyroidism. In congenital hypothyroidism, brain development retardation may be related with some important processes, including abnormal synaptic formation, excess ROS production and apoptosis. The above-mentioned proteins may play critical roles in the processes, which provide valuable clues to clarify the pathogenesis of brain developmental disorders induced by congenital hypothyroidism.</p>


Subject(s)
Animals , Female , Pregnancy , Rats , Animals, Newborn , Metabolism , Brain , Metabolism , Cerebral Cortex , Metabolism , Congenital Hypothyroidism , Metabolism , Proteome , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL